Electrical Safety Innovation

How today's technology is enabling the next-generation of electrical LOTO

Marty Kronz

mjk@panduit.com

Agenda

- 1. Review Prevention through Design, Hierarchy of Controls, Electrical Hazards
- 2. Electrical LOTO Example
- 3. Voltage Testing Technologies
- 4. Best practices for evaluating and applying electrical safety technology

Prevention through Design, Hierarchy of Controls & Electrical Hazards

Prevention through Design (PtD)

The practice of anticipating and designing out hazards as early as possible in the lifecycle of a product

Applies throughout organization

Think **new** & existing equipment

Consider entire lifecycle

Hierarchy of Risk Controls

Most Effective

PtD Focus

Least Effective

Lockout Tagout (LOTO)

Control of Hazardous Energy OSHA 29 CFR 1910.147

- Chemical
- Electrical
- Hydraulic
- Mechanical
- Pneumatic
- Thermal

Electrical Hazards

Electrical hazards impact everyone – not just electrical workers!

Time for Innovation

The number of electrical injuries is **no longer decreasing**

Many believe electrical injuries are **underreported**

Electrical Injuries

Source: http://files.esfi.org/file/Workplace-Electrical-Injuries-2003-2017-F927.pdf

Frequency of Electrical Incidents

Question: Have you experienced any of the following within the past five years?

Example: Electrical Lockout/Tagout

LOTO...and then Verify!

Verifying a De-Energized Condition

NFPA 70E 120.5 Process for Establishing and Verifying an Electrically Safe Work Condition

(7) Use an adequately rated portable test instrument to test each phase conductor or circuit part to verify it is de-energized. Test each phase conductor or circuit part both phase-to-phase and phase-to-ground. Before and after each test, determine that the test instrument is operating satisfactorily through verification on any known voltage source.

Portable Testers Have Limitations

Error Setting Function Selection Switch

Electrician severely burned when a multimeter switch **was incorrectly placed in resistance mode** prior to making contact with terminals in a 480V MCC.^[1]

Inadequately Rated Tester Arc created when a voltmeter was connected across two phases of a bus bar. Arc caused tester to overload and explode resulting in one fatality and another worker with serious burn injuries.^[2]

Error Reading Digital Display "OL" or over-range was misinterpreted to mean "zero" or no voltage present, resulting in a near-miss.^[1]

Use of Improper Portable Tester Although a non-contact voltage probe did not indicate voltage, a lighting circuit was in fact energized, resulting in electrical shock.^[3] Using a Voltmeter for verification has limitations...

- Hardware failures
- Human error
- Process failures
- Misinterpretation
- Exposure to hazards

[3] J. Prigmore, J. Bishop and J. Martens, "Electrical Investigations: Case Studies, Common Electrical Safety Mistakes, and Lessons Learned," IEEE Electrical Safety Workshop, 2018.

^[1] H. L. Floyd and B. J. Nenninger, "Personnel safety and plant reliability considerations in the selection and use of voltage test instruments," IEEE Trans. Ind. Appl., vol. 33, no. 2, pp. 367–373, 1997.

^{[2] &}quot;Hispanic factory worker dies of burns after improperly testing a 480-volt electrical bus bar," Fatality Assessment and Control Evaluation (FACE) Program, Nat. Inst. Occupational Safety Health, Centers Disease Control Prevention, U.S. Dept. Health Human Services, Cincinnati, OH, 2005.

LOTO and Verification

<u>Traditional process</u> relies on:

- Portable testers
- Procedures
- Training
- Personal protective equipment

Administrative Controls

Human Factors

	ess	Multi-taski	ng	Assumptions	ptions Familiarity with Ta		ask
	Str	Fatigue	C	Verconfidence	-	Distract	tions
Repetitive actions			-			Ð	
	Experie	ence Level	ibilities	Unexpected Cor	ntigurations S	Attituc	/ith
Work Environment		lear	Interruptions	Time Pres	Time Pressure		
	Complacency		Unc Resp	Illness Task Demands		S	iliar ipme
		,	•	Personality Conflicts			Fam Equ

Equipment Condition

Communication

In a study of **electrical burn** patients, researchers found that **no patient** in the study **followed all appropriate safety measures.**

Source: J. Nobel, M. Gomez, and J.S. Fish, "Quality of Life and Return to Work Following Electrical Burns," Burns, vol. 32, 20. 2, p. 159-164, 2006.

Applying Prevention through Design

Use of an installed tester

☑ Reduces likelihood of exposure and severity of exposure
☑ Reduces errors from inadequately rated testers

Automating the test process

✓ Improves consistency of the verification process
✓ Reduces human errors
✓ Improves efficiency

Verifying a De-Energized Condition

NFPA 70E-2021 120.5 Process for Establishing and Verifying an Electrically Safe Work ConditionCSA Z462-2021 4.2.5 g) Exception 2) & Note 1

(7) Use an adequately rated **portable test instrument** to test each phase conductor or circuit part to test for the absence of voltage. Test each phase conductor or circuit part both phase-to-phase and phase-to-ground. Before and after each test, determine that the test instrument is operating satisfactorily through verification on any known voltage source.

Exception No. 1 to (7): An adequately rated permanently mounted absence of voltage tester shall be permitted to be used to test for the absence of voltage of the conductors or circuit parts at the work location, provided it meets the all following requirements:

- 1) It is permanently mounted and installed in accordance with the manufacturer's instructions and tests the conductors and circuit parts at the point of work
- 2) It is listed and labeled for the purpose of verifying the absence of voltage
- 3) It tests each phase conductor or circuit part both phase-to-phase and phase-to-ground
- 4) The test device is verified as operating satisfactorily on any known voltage source before and after testing for the absence of voltage

Informational Note No. 2. For additional information on rating and design requirements for permanently mounted absence of voltage testers, refer to UL 1436, Outlet Circuit Testers and Other Similar Indicating Devices.

NFPA 70E Handbook, 2018 & 2021 Edition

120.5(7)

Exception No. 1: An adequately rated permanently mounted test device shall be permitted to be used to verify the absence of voltage of the conductors or circuit parts at the work location, provided it meets the all following requirements: (1) It is permanently mounted and installed in accordance with the manufacturer's instructions and tests the conductors and circuit parts at the point of work; (2) It is listed and labeled for the purpose of verifying the absence of voltage; (3) It tests each phase conductor or circuit part both phase-to-phase and phaseto-ground; (4) The test device is verified as operating satisfactorily on any known voltage source before and after verifying the absence of voltage.

Typically measurement devices indicate when voltage is present, but lack of indicating a voltage does not guarantee the equipment has been de-energized. For this reason, these mounted devices are designed to run internal diagnostics, verify operation on a known voltage source, confirm contact with the circuit, and verify the lack of voltage. These measurement devices do not use equipment voltage to verify the operation of the device. A secondary test source is available to perform this function. The device will then actively indicate the lack of voltage. See Exhibit 120.14 for an installed absence of voltage tester indicating that equipment is de-energized. Absence of voltage testing equipment for fixed installations is listed to UL 1436, *Standard for Outlet Circuit Testers and Similar Indicating Devices*.

Article 120

Establishing an Electrically Safe Work Condition

EXHIB/T 120.14

Absence of voltage tester. (Courtesy of Pandult Corp.)

Comparison of Test Methods

Permanently-Mounted Absence of Voltage Tester

Traditional Method with **Portable Tester** Using a Permanently-Mounted Absence of Voltage Tester (AVT)

VeriSafe[™] Absence of Voltage Tester

Combines Voltage Presence Indication with Absence of Voltage Testing

Red LEDs indicate hazardous voltage present

VERISERT Absence of Voltage

Lack of red LEDs **does**

not guarantee voltage

absence

Push to initiate test and see progress

Green indicates **absence of voltage** is confirmed

Upstream Power: ON

Upstream Power: OFF

Upstream Power: OFF

Upstream Power: OFF

AVT Listing & Labeling Requirements

Key AVT Requirements

UL 1436 Standard for Outlet Circuit Testers and Similar Indicating Devices, 6th Edition (September 6, 2016) <u>https://standardscatalog.ul.com/standards/en/standard_1436</u>

UL 1436 STANDARD FOR SAFETY Outlet Circuit Testers and Simila Indicating Devices

User initiated test

Installation test & "test the tester"

Test for AC and DC voltage

Active indication

Internal overcurrent protection

Keep Hazardous

voltage off the door

Electrical requirements in UL 61010

Functional safety requirements

Electrical Construction

- IEC 61010 Provides general safety requirements for electrical and test measurement equipment
 - Protection from electrical shock
 - Electrical spacing and insulation requirements
 - Impulse and transients
 - Mechanical impact
 - Environmental hazards

- Electrical construction requirements are based on combination of Overvoltage **Category and Working Voltage**
 - CAT IV 1000V 12 kV impulse CAT IV 600V – 8 kV impulse CAT IV 300V -6 kV impulse CAT III 600V – 6 kV impulse
 - CAT III 1000V 8 kV impulse 4 kV impulse

CAT III 300V -

Functional Safety and VeriSafe AVTs

- Any part of the AVT safety function must meet SIL 3 requirements
- The VeriSafe AVT exceeds SIL 3
 - Hazardous failure rate (λ DU) of 10
 - Probability Failure per Hour (PFH) of 10⁻⁸

10⁻⁸ equates to **1 failure** per: **100 million operating hours 11,000+ years 36 billion tests**

Use Cases

Access Control

Reduce workplace hazards through design

Provides an **added** layer of protection

Next-Generation of Electrical LOTO

Absence of Voltage Testers & Lockout/Tagout

Equipment with AVTs

Control Panels, Motor Control Centers, Safety Switches, Switchgear, Switchboards, Transformers, Packaged Drives, Bus Duct, etc.

MOTOR CONTROL CENTER (MCC)

AVTs are solutions for

- ✓ New equipment
- ✓ Retrofits
- **OEM** installations

SWITCHBOARD

Comparing Voltage Testing Technologies

"But I Trust My Portable Tester..."

	Typical Portable Tester	VeriSafe AVT
I can see what I'm testing	Exposure to hazards, conductors may not be exposed	Connectivity is part of every test
Functionality Test	Live-Dead-Live	Automatic Live-Dead-Live with Built-in Known Voltage Source
Voltage Rating	Varies	Up to 600V
Overvoltage CAT	CAT III / IV	CAT III (600) / CAT IV (300)
UL Listing	UL 61010 or IEC 61243-3	UL 61010, UL 1436, UL 508
Functional Safety		SIL 3
Third-party certification	\checkmark	

Portable Testers Have Risk

Voltage Testing Traps

Insulated Conductors

Finding a Reliable Ground

Barriers

Fuses & Accessories

Obstructed Access/Poor Visibility

Terminology Matters

Best Practices evaluating and applying electrical safety technology

Future Vision

A connected infrastructure...designed for **safety**.

Summary

- To advance electrical safety, embrace the continuous improvement mindset
 - Leverage the near miss
- Use Prevention through Design when mitigating hazards
 - Control measures that are designed in are more effective than administrative controls and PPE alone
- Seek out new technology and innovation
 - New solutions to old problems like LOTO and verification are now viable

How can you apply PREVENTION THROUGH DESIGN at your organization?